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A THEORETICAL STUDY OF RADAR RETURN 

AND RADIOMETRIC EMISSION FROM THE SEA 

William H. Peake 

The Ohio State University ElectroScience Laboratory 

I. INTRODUCTION 

During the past four or five years , as significant amounts of radar 

(and more recently, microwave radiometer) imagery have become available 

to the scientific public, a substantial literature on the interpretation 

of this imagery has developed., The greater part of these studies (Refs. 

1, 2) have been based upon the identification or recognition of familiar 

features (drainage patterns, geological lineaments, soil contacts, 

patterns of land usage , vegetative cover) in the imagery, although there 

have also been one or two studies (Ref. 3) of surface discrimination by 

means of the textural quality within homogeneous areas of the image. 

As yet, however there have been few attempts to use either imagery, 

or other types of microwave sensor output, to obtain quantitative 

estimates of surface parameters. There are at least two reasons for 

this. The first is that, with few exceptions, the imagery itself is 

not well enough calibrated in grey scale to permit estimates of absolute 

(or even relative) values of the surface scattering cross-sections or 

brightness temperatures. The second reason is that most of the useful 

image interpretation has been made by geoscientists, who are not familiar 

with the relations between the radar scattering cross-section do, the 

brightness temperatUre Tb9 and those properties of the surface which control 

them. It is also true that in many cases the sequence of sensor outputs 

which would be most useful in establishing a particular surface parameter 

is not a spatial sequence (i.e., an image) but is of some other kind 

(e.g., a variation of o. or Tb with look angle -- the scatterometer 

experiment -- or with polarization, frequency, time of day, etc.) 



Thus before any large scale satellite remote sensing program can be 

undertaken with microwave sensors, a number of interpretive studies should 

be undertaken. This is of particular importance if it is desired to es- 

tablish quantitative relations between the sensor output and the surface 

properties, because these will affect the design of the sensing instrument. 

This is especially true for the design of a general purpose radar-radiometer 

sensor because of the wide variety of applications such a system would have. 

Ideally, these many potential applications should each be validated by care- 

fully controlled, repeatable experiments together with extensive ground 

truth data and detailed theoretical interpretation. In many cases this 

process can most effectively be carried out by small scale measurements 

from towers or trucks, or modelling and theoretical studies under laboratory 

conditions, rather than by the more expensive programs utilizing aircraft 

or spacecraft programs. 

One application of microwave remote sensing of particular importance 

is to the estimation of the state of the sea surface (Refs. 4, 5). Among 

the parameters which might be estimated by suitable choice of sensor and 

signal design are the r.m.s. wave height, the r.m.s. wave slope, the 

percentage of foam cover (and thus, perhaps, the local wind velocity), 

the water temperature and salinity at the surface. The ability to sense 

such parameters on a synoptic basis would have very important practical 

applications to global weather forecasting, ship routing, etc., as well 

as the more obvious scientific applications. However, in order to 

interpret the sensor output in terms of the surface parameters, one 

must have detailed models to relate these parameters to the measurable 

scattering and emission characteristics. It is the purpose of the work 

reported here to investigate the "composite" model for sea surface 

scattering, and to provide direct methods for determining the scattering 

from actual representations of the sea surface. The details of the work 

reviewed in this final report may be found in the technical reports and 

papers generated during the contract period (Refs. 12, 13). 
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II. PAST WORK ON SEA SURFACE CHARACTERISTICS 

During the past few years, theoretical and experimental work here 

and abroad (Refs. 5-9) has led to an understanding of the mechanisms 

responsible for scattering and emission of microwaves by the ocean. 

For off-normal backscatter, the "Bragg-scatter" from capillary and 

short wavelength components of the ocean surface, which can be cal- 

culated by perturbation theory, has explained the angular and polari- 

zation dependence of the microwave radar return. When combined with the 

known height spectrum (Ref. 4) of the ocean surface, it explains the 

weak dependence of backscatter on electromagnetic wavelength and wind 

velocity. Near the specular direction, i.e., near normal incidence for 

backscatter, the scattering is controlled by the slope distribution of 

the large scale structure of the surface. This part of the scattering 

is calculated by geometrical optics and provides an explanation of the 

dependence of the brightness temperature of the ocean on incidence angle, 

polarization and wind velocity (at least at the lower wind speeds). This 

view, that at microwave frequencies two different mechanisms contribute 

to the scattering behavior has led to the development of the "composite" 

model in which the ocean surface height h(x,y) is written as the sum of 

two statistically independent random processes h(x,y) = z(x,y) + s(x,y) 

where z represents the large scale structure (scattering calculated 

by geometrical optics) and s the small scale structure (scattering 

calculated by perturbation theory). The actual ocean has a continuous 

height spectrum W(k) such that the mean square height is 

ch 2 > = 
I 

W(k) kdk 
0 

It is not clear, however, that the two independent processes z(x,y) 

with height spectrum WE(k) and s(x,y) with height spectrum Ws(k) 

(such that W = W, + Ws) can always be suitably chosen. This is 

because the conditions on the use of the perturbation theory are 

that 
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q 2 m > = J W,(k) kdk << A; 

0 

<g 2 O3 > = 
I 

W,(k) k3dk << 1 

where 

b 

‘e = electrical wavelength 

2 
<s ’ = mean square height of small scale process 

<fJ 2 > = mean square slope of small scale process. 

The condition on the use of geometrical optics for the large scale 

process is that 

<l/R;> s J 
co 

- W,(k) k5dk << (l/~,)~ 

where 

0 

2 <R > = 
R mean square radius of curvature of 

large scale process. 

For the actual ocean surface spectrum one may use W, alone (i.e., 

set W, = 0) at low frequencies (say f < 5 to 10 MHz), and W, alone 

( i.e., set Ws = 0) at optical frequencies. However, it is not al- 

ways possible to make a separation of W(k) into two parts, which 

satisfy the three conditions above, at frequencies in the micro- 

wave region. 
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Our approach to the development of a complete model (Refs. 10, 11) 

for the ocean surface has been to use the composite (Ref. 11) model as 

a starting point, with the radar scattering controlled off normal in- 

cidence by the Rayleigh scattering from the capillary waves, and near 

normal incidence by the physical optics scattering from stationary 

phase points of the swell component. It has been found that this model 

is in good agreement with the radar data near vertical incidence, 

especially for smooth seas, and gives an rms slope in reasonable 

agreement with oceanographic prediction of slope based on wind velocity. 

The model also gives good agreement with radar data at the large incidence 

angles (between 20' and 70') and is in qualitative agreement with the 

polarization behavior of the radar data. Furthermore, the predicted 

brightness temperatures of seas that are not too rough are in reasonable 

agreement with such data as are available. It is clear, however, that 

the composite model alone cannot account for the brightness temperature 

observed over very rough seas , or for all of the polarization properties 

of the radar return especially near grazing. Thus we have modified the 

model to include the effect of white caps, foam, or wind driven spray, 

which can be partly accommodated simply by introducing a new effective 

dielectric constant proportional to the density of the foam or 

disturbed water. 

Considerable progress has also been made in the computational 

part of the investigation and is described in detail in References 

12 and 13. Computer programs have been developed for three dif- 

ferent approaches to one-dimensional random surface scattering. 

The first, the so-called geometrical optics (G.O.) method, calculates 

the position and curvature of each stationary phase point on the 

surface. The scattered field strength for any incident and scat- 

tering direction is found by summing the contribution from each 

specular point (including an extra 90' phase shift for specular 

points of positive curvature). Shadowing effects may be included if 

desired. The second program (the physical optics or P.O. approximation) 
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calculates the value of the scattered field from the equivalent surface 

currents given by the tangent plane approximation (i.e., ss = 2; x Pi 

for a metal). Again, shadowing may be included if desired. Both of 

these programs are usable for surfaces of any length (surfaces up to 

5000 electrical wavelengths long have been run), and can be easily 

modified to cover dielectric, as well as perfectly conducting surfaces. 

The third program is based on solving the integral equation (I.E.) for 

the surface currents exactly, by numerical methods (i.e., by matrix 

inversion) using a point matching formulation. At the present, 

this program is restricted to surfaces of total arc length less 

than 30 to 60 electrical wavelengths. In all programs the incident 

wave is a plane wave, with amplitude tapered to zero at the two ends 

of the surface to minimize edge effects. 

In addition to the customary checks on flat plates and sections 

of circular cylinder, a number of surfaces of the type 

h(x) = y A,(s) sin(Kmx + 4,) 
1 

have been run (Ref. 12). By choosing Km and Am appropriately (Km's not 

harmonically related to avoid periodicity, distributed approximately 

unifc;.:ly in K space; Am approximately proportional to l/m2) sur- 

faces rather similar (in appearance and spectrum) to a wind driven 

water surface have been generated. By comparing the scattered 

fields given by the three programs we have found that I.E., P.O. 

and G.O. fields agree well as long as all but a small fraction of 

the surface has radius of curvature R greater than about 2.5 elec- 

trical wavelengths. If R < 2.5 xe over a significant fraction of 

the surface the G.O. and P.O. fields rapidly deviate from the correct 

value. However, the G.O. method gives zero scattered field if no 

appropriate specular points exist, and infinite field if the specular 

point coincides with a point of inflexion of the surface. Since the 
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"statistical" theories of P.O. scatter from random surfaces actually 

yield results identical to G.O. (essentially because the P.O. integral 

can only be evaluated in closed form by stationary phase methods) it 

is clear that direct numerical integration of P.O. currents can 

significantly extend the range of surfaces for which a spectrum W (k) 

may be chosen. (For example, if <l/R2> 2BKE/2 where B s .006 cm l 

and Kc is some appropriate cutoff, such that W,(k) = 0 f& K > Kc, 

say Kc = 3 cm-' , one might expect to use the P.O. integral to calculate 

scatter for electrical wavelengths smaller than about 2 cm. 

Another set of computations has compared (Ref. 12) P.O. with I.E. 

fields for surfaces of very small mean square height. The two methods 

agree well and furthermore, as the surface height is increased (by 

increasing by the same factor all amplitudes in the Fourier series 

representation of the surface) all the scattered fields increase in 

exact proportion, with the scattered energy concentrated in the 

direction specified by the Bragg condition. Thus for small surface 

amplitudes the I.E. and P.O. fields also agree with the results of the 

perturbation theory. The fields cease to be proportional to surface 

height when <h2 > s (he/lo)2 and this is also, _ approximately, the point 

where the coherent reflected wave contains only half the total energy. 

Thus one may use the perturbation theory as long as <h2> (perturbation 

theory alone) or <s2> (perturbation part of composite theory) is less 

than (x,/lo)'. 

By comparing the correct scattered fields from exact current dis- 

tribution from the I.E. solution with those calculated from physical 

optics, geometrical optics , and perturbation theory we have established 

directly (Ref. 12) the surface requirements for the several theories to 

give good results. Because of the simplicity of the direct integration 

of physical optics current distributions, and the fact that for certain 

ocean surface states there is a range of microwave frequencies for 

which the curvature requirement R < 2xe can be satisfied, it appears 

feasible to calculate the backscattering cross section for the ocean 
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directly from the surface height h(x,y). This is particularly sig- 

nificant in view of the results summarized in Ref. 13, in which it 

is pointed out that the actual sea surface has a number of significant 

features that are not adequately characterized by a simple gaussian 

process. 

III. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

On the basis of the work reported above and presented in Refs. 

12, 13, it may be concluded that a variety of direct methods can be 

used to calculate the scattering from ocean like surfaces under 

appropriate conditions. In the future, it would be desirable to 

compare the results of the standard theories of rough surface scat- 

tering with the results of direct calculation based on the physical 

and geometrical optics programs already developed. This will require 

the running of a large number of surfaces (preferably dielectric 

rather than perfect conductors) and subsequent statistical averaging. 

It would also be desirable to develop specific realizations of the 

actual sea surface which take into account the actual behavior of the 

surface, in order that the direct calculations of scattering and 

emission properties be more realistic. 
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